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Abstract. We present a solution to image-based cell counting with dot
annotations for both 2D and 3D cases. Current approaches have two
major limitations: 1) inability to provide precise locations when cells
overlap; and 2) reliance on costly labeled data. To address these two is-
sues, we first adopt the inverse distance kernel, which yields separable
density maps for better localization. Second, we take advantage of unla-
beled data by self-supervised learning with focal consistency loss, which
we propose for our pixel-wise task. These two contributions complement
each other. Together, our framework compares favorably against state-
of-the-art methods, including methods using full annotations on 2D and
3D benchmarks, while significantly reducing the amount of labeled data
needed for training. In addition, we provide a tool to expedite the label-
ing process for dot annotations. Finally, we make the source code and
labeling tool publicly available.
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1 Introduction

Our work focuses on cell counting from 2D images and 3D volumes, which is crit-
ical to a wide range of research in biology, medicine, and bioinformatics, among
other fields. By casting this problem into an object detection or image segmen-
tation problem, significant progress has been achieved with the help of recent
successes in deep learning [39]. However, one drawback of these approaches is
that they typically rely on full annotations of cells (whole-cell), the acquisition
of which is a time-consuming and laborious process. To alleviate the burden
of manual labeling, others propose using dot-annotations, which represent cells
as a single pixel or voxel in the centroid of a cell, and attain competitive re-
sults [I7U54]. Since dot annotations are too sparse for training, such methods
typically construct a density map by “smoothing out” dot annotations via a
Gaussian kernel and then train a deep model to learn a mapping between the
inputs and the density maps. The final cell counting can be inferred via post-
processing techniques (e.g., peak detection or connected component analysis) on
the resulting density maps.
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Fig. 1: An example of 2 cells with dot annotations marked by red crosses (left).
Due to cell overlapping, the resulting density map with Gaussian kernel (middle)
becomes a blob, whereas the inverse distance kernel (right) remains separable.

One remaining challenge is handling overlapping cells, as shown in Fig.
where the resulting density map becomes an inseparable blob, rendering post-
processing techniques ineffective. An intuitive solution is to introduce a heuristic
approach for finding the optimal width of the Gaussian kernel to avoid these
blobs. However, it would be overwhelmingly difficult to design such an approach
when there is a large number of cells. Inspired by recent success in crowd count-
ing [I1], we propose to replace the Gaussian kernel with the inverse distance
kernel to address the overlapping issue. This distance transform uses the inverse
distance of the nearest neighbor for each dot annotation to build the density
maps and is able to separate overlapping cells effectively, as illustrated in Fig.

Another challenge is that current deep learning-based methods are data-
hungry, which is particularly problematic in the field of cell counting due to the
lack of large-scale training datasets like ImageNet. Even with dot annotations,
manual annotation of hundreds of cells still poses a significant challenge. On the
other hand, recent progress in utilizing unlabeled data via self-supervised learn-
ing has been impressive [I8I6/15]. One significant component of self-supervised
learning is consistency regularization, which forces the model to yield similar out-
puts between the original and perturbed (e.g., adding noise) inputs for better
generalization. We adopt the same idea for cell counting to reduce the reliance
on manual annotations. However, we did not observe noticeable improvement
during our initial implementation. Since these methods were designed for tasks
like classification, with image-level labels, it is natural to apply perturbations on
the same level. In contrast, our task involves pixel-level regression, with most of
the image being noisy background. Applying perturbations on the whole image
will mislead the model to learn image artifacts instead of the cells. Therefore,
we propose a focal consistency loss, which will help the model “focus” on cells
rather than the noisy background.

In addition, we notice a lack of cell labeling tools tailored for dot annota-
tions. Current cell labeling tools are typically designed either for general labeling
tasks, e.g., ImagelJ, or specifically for segmentation with full annotations, e.g.,
Segmentor [2]. To address this issue, we developed modifications to Segmentor
to directly support dot annotations. These include adjustable pre-processing to
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provide initial results for easy correction to reduce user workload, and visualiza-
tions to help track progress, which is especially useful for 3D volume labeling.
In summary, the contributions of this paper are four-fold:

1. A simple yet effective way to address the challenge of overlapping cells in
image-based cell counting. Applying the inverse distance kernel instead of
the Gaussian kernel on dot annotations enables separable density maps and
outperforms state-of-the-art methods in a fully supervised setting.

2. A self-supervised approach with our novel focal consistency loss to exploit
unlabeled data. It is effective when labeled data is scarce, even against meth-
ods with full annotations.

3. A labeling tool for dot annotations based on Segmentor [2], enabling a
pipeline for image-based cell counting from labeling to modeling.

4. Source code and the interactive labeling tool are released to the community
at https://github.com/mzlr/cell_counting_ssl, hoping to spur further
investigation in this field.

2 Related Work

The relevant work related to this paper can be divided into two categories:
image-based cell counting and self-supervised learning.

There has been significant progress in image-based cell counting, especially
after the success of deep learning in various domains [7J6/5]. Since cell counting
belongs to a broad topic of object counting, generic detection or segmentation
based methods have been explored for 2D images [3] and 3D volumes [9]. Still,
the reliance on time-consuming full (whole-cell) annotations hinders their im-
pact. Alternatively, dot annotations have become increasingly popular for their
simplicity. Notably, Xie et al. [I7] applied the Gaussian kernel to dot annotations
and used U-Net to learn a mapping between input images and resulting density
maps. The final cell count is inferred by the integration of the density maps. Lu
et al. [12] designed a Generic Matching Network to learn the exact mapping,
which is capable of leveraging large object detection datasets for pre-training
and adapting to target datasets. Guo et al. [4] later expanded the framework
for 3D volumes and developed a unified network structure, SAU-Net, for various
cell types, focusing on the universal nature of the method. However, these ap-
proaches rely on the Gaussian kernel to build the density maps and are subject
to the issue of inseparable density maps for overlapping cells.

Self-supervised learning describes a class of algorithms that seek to learn from
unlabeled data with auxiliary (pretext) tasks. It is a generic learning framework
and can be applied in either unsupervised settings to learn useful representations
for downstream tasks [8] or semi-supervised settings for a specific task [I6]. This
paper focuses on the latter for its simplicity. Given labeled data x and its labels
y, and unlabeled data z’, self-supervised learning generally has an objective
function of the following form:

Li(fo(x),y)+  wlu(fo(z') (1)
—_— ——_——

primary task auxiliary (pretext) task
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where £, is the supervised loss for primary tasks, e.g., Cross-Entropy (CE) loss
for classification tasks or mean squared error (MSE) for regression tasks. £,, is the
unsupervised loss for auxiliary tasks (e.g., consistency loss), w is a weight ratio
between the two losses, and 6 represents the parameters for model f. For exam-
ple, Xie et al. [16] designed an auxiliary task by enforcing consistency constraints,
i.e., the model is expected to generate consistent outputs given perturbations,
and used advanced data augmentation methods as the perturbations. Sohn et
al. [15] later extended this idea by considering a pair of weakly-augmented and
strongly-augmented unlabeled samples. Ouali et al. [14] observed that injecting
perturbations into deep layers of the network rather than the inputs is more
effective for segmentation tasks and built an encoder-decoder network based
on this observation. Despite numerous advances for self-supervised learning in
multiple domains, its application to image-based cell counting has rarely been
explored.

Inspired by recent crowd counting work [I1], we propose using the inverse
distance kernel to address the issue of inseparable density maps. Furthermore,
we aim to take advantage of recent success in self-supervised learning for image-
based cell counting and leverage unlabeled data to reduce the reliance on costly
labeled data.

3 Method

Given dot annotations D, the resulting density map M traditionally can be seen
as the sum of Gaussian kernels N with width o centered on each individual dot
annotation d: M = Y, N(d,0?). With the corresponding image I and the
resulting density map M, the goal is to train a model f with parameters 6 for
the mapping between the image and density map : fo(I) — M.

3.1 Inverse Distance Kernel

As shown in Fig. [I] Gaussian kernels suffer the problem of inseparable density
maps. We propose to use the inverse distance kernel from [11]. Mathematically,

we have
1

- Ly(i)Y + C’ 2

where 7 denotes a pixel, and Lo (%) is the Euclidean distance between pixel ¢ and
its nearest dot annotation, i.e., mingep ||i — d||2. Here, C' is a constant to avoid
dividing by zero, and -y is a decay factor to control the response rate between dot
annotations and background. In practice, we set C' = 1 and v = 0.02L4(4) 4+0.75,
following [1T].

Viel, Mdis(i)

3.2 Focal Consistency Loss

Following the general framework for self-supervised learning described above,
our learning objective consists of two tasks: a primary task with a supervised
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Fig.2: Overview of the proposed method. « is the focal weight to “focus” on
predicted cells instead of background noise, and MSE denotes mean square error.

loss on n labeled images I, 2 >, || fo(I) — My;s||3, and an auxiliary task with the
consistency loss on n’ unlabeled images I, % 3, || fo(6(I")) — f7(I")[]3. Here,
we use the pixel-wise mean squared error (MSE) for both tasks. fy denotes the
shared model with parameters 6, and 0 is a fixed copy of the current #, which
is not updated via back propagation and can be viewed as containing pseudo-
labels, as suggested in [16]. 6 denotes the transform for perturbations. In practice
we found that the vanilla framework did not generalize well to our task. Since
our task is pixel-level, rather than an image-level task such as image classifi-
cation for which the framework was originally proposed, adding perturbations
to the whole image will inevitably learn the image artifacts in the background.
Therefore, we propose a focal consistency loss, % >, || fo(6(I")) — f7(I")[|3 with
focal weight oo = 3", .o, N(d',0?), where D’ is the set of the local maximums
in the current predicted density maps f;(1’), which are considered as predicted
cells and can be inferred by a maximum filter. a ensures that we only calculate
the consistency loss in the vicinity of the local maximum, i.e., focusing on cells
and ignoring background. We also considered several commonly used perturba-
tions, e.g., random contrast/sharpness/brightness/noise, etc., and found directly
injecting noise into the last layer of the encoder yields the best performance, as
suggested in [I4]. Our final loss function is

Lonar = + S o(0) = Masll3 4 5 3 oo (0 () — F5(T) B (3
I I’

where fy,.. and fg,.. are the encoder and decoder of the network, respectively.
The overview of the proposed method is shown in Fig. 2

3.3 Implementation Details

This work uses SAU-Net [4] as the base model, favoring its versatile nature for
both 2D and 3D. We use the Adam optimizer with a cosine decaying learning
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rate, and the initial value for the schedule is 0.001. For the weight w in Eq. [3]
we follow the ramp-up schedule in [I4], which exponentially increases from 0 to
1, avoiding noisy signals in the early stage of training. All the hyper-parameters
are shared across 2D and 3D experiments, highlighting the versatility of our
method.

4 Labeling Tool

To streamline the labeling process for dot annotations we added a dot annotation
mode to the Segmentor 3D annotation tool [2]. We first apply Otsu’s method and
connected component analysis for cell detection, and use the centroids of each
component as initial results for user refinement, e.g., identifying merged cells
and making the appropriate corrections. In the 2D slice view, dot annotations
in nearby z-axis slices are marked with separate visualizations to ease the effort
of tracking completed regions. In an adjacent 3D view, volume rendering can be
used to verify the placement of the dot annotations.

To quantify the decrease in labeling time for dot annotations vs. full (whole-
cell) annotations, we asked four users to dot-annotate four 3D volumes with
156 cells in total and compared the time to the full annotation time previously
reported in [2]. The average speed for dot annotation is ~0.3 minutes per cell,
whereas full annotations take ~8 minutes per cell, a speedup of ~27x. In addition
to improved labeling efficiency, our experiments in the next section show that our
dot-annotation method outperforms a state-of-the-art full-annotation method.

5 Experiments

We used two benchmarks to evaluate the proposed method, the 2D VGG dataset [10]
and a 3D light-sheet dataset [9]. VGG is a synthetic dataset that contains 200
fluorescence microscopy cell images with an even split between training and test
sets, and each image containing 174 £ 64 cells. The 3D dataset comprises light-
sheet images of the mouse cortex with 16 training volumes and 5 test volumes.
Each volume includes 861 4 256 cells. This dataset contains full (whole-cell) an-
notations, and we convert them into dot annotations by using the centroids of
the full annotations. Note that we only use a fraction of the training data to
study reliance of the proposed method on labeled data; nonetheless, we always
evaluate our method on the whole test set. Previous works [T6I15] suggest self-
supersized learning benefits from a large amount of unlabeled data. Following
this, we use an additional 55 unlabeled samples for the 3D experiment on the
light-sheet dataset, which are all the available unlabeled data from the original
work. For the 2D experiment on the VGG dataset, we use 8 out of 100 train-
ing data for the supervised training and treat the remaining 92 of the unused
training data as unlabeled data for self-supervized training.

We use two metrics to evaluate the proposed method: the mean absolute error
(MAE) between the predicted and ground-truth cell counts, and the F; score for
cell detection. We follow the post-processing techniques from [9/4], i.e., perform
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Fig. 3: Sample images of 2D VGG dataset (left) and 3D light sheet dataset with
2D (middle) and 3D (right) view. Dot annotations, typically in the centroids of
cells, are marked with red cross overlays.

Connected Component Analysis after thresholding and use the centroids of each
component as cell locations. Depending on the type of annotations, a detection
is valid when a predicted centroid lies within a full (whole-cell) annotation of a
cell or a radius of a dot annotation, where the radius is an empirical radius of
cells. MAE has an inherent deficiency since it is unable to distinguish correct cell
counts. For a trivial case with only one cell, a method could miss that cell and
yield a 0 F; score but pick up background noise as a cell and achieve a perfect
MAE of 0. Without location information, it would be impossible to determine
this error using MAE. Nonetheless, we still report MAE for a direct comparison
with previous work.

5.1 Ablation Study

A 3D light-sheet dataset is used for our ablation study since its full annotations
enable a comparison with more methods. This work focused on learning using
limited data; therefore, only one volume is used for training. All the experiments
are conducted with the same baseline SAU-Net, and the model is initialized
from the same random weights, which could help us better attribute the source
of improvement. Table |[1| shows that using the inverse distance kernel already
outperforms the baseline and SAU-Net with full annotations, and our proposed
self-supervised learning further improves the performance.

Table 1: Ablation study

Method MAE F1 (%)
Gaussian kernel (baseline) 57.8 93.55
Full annotations* 42.2 94.12
Inverse distance kernel 13.8 95.21
Inverse distance kernel + self-supervised learning (proposed) 12.4 95.86

* Implementation following [9] except replacing U-Net with SAU-Net for consistency.
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Table 2: 2D VGG dataset Table 3: 3D light sheet dataset
Method MAE Fi(%) Nerain© Method MAE Fi (%) Nerain
Arteta et al. [I] 5.1 93.46 32 NuMorph [9] (full-annot.) 50.1 95.37 4
GMN [12] 36 9018 32  CUBIC [I3] (unsupervised) 36.2 9543 -
SAU-Net [4] 2.6 9451 64 SAU-Net [4] (dot-annot.) 42.2 93.97 4
Ours 5.6 96.78 8 Ours (dot-annot.) 12.4 95.86 1

5.2 Comparison to State-of-the-art

We compare our proposed method with other state-of-the-art approaches on
the 2D VGG and 3D light-sheet datasets. To show that our method reduces
the reliance on labeled data, we drastically limit the number of labeled data to
25% or less of the amount used in other state-of-the-art approaches. Table
and [3| present the results. For both datasets, our method improves the perfor-
mance in terms of Fj score, even improving upon the full-annotation method,
while substantially reducing the amount of labeled data needed for training. Our
method does not outperform [4], the state-of-the-art Gaussian method, on the
MAE metric for the VGG dataset. This is due to the fact that this synthetic
dataset contains severe overlapping, as shown in Fig. |3} and the ground-truth is
pre-defined; otherwise, it would be considerably challenging for human annota-
tors. For those cases, the cell count can still be obtained by integration of the
Gaussian density maps, although they are inseparable. On the other hand, our
method attains better performance on the F} metric with location information.
In our opinion, although widely used for cell counting, MAE provides a limited
evaluation for cell counting methods. Since it ignores the location information
of individual cells, we also calculate the F; score for a comprehensive review.
Overall, by utilizing unlabeled data, our method outperforms most state-of-art
methods in 2D and 3D cases with a quarter or less of labeled data.

6 Discussion

We introduce a framework for image-based cell counting using dot annotations,
including a labeling tool and an improved model with a highly efficient training
scheme. Compared to conventional Gaussian kernel methods, our model exploits
the inverse distance kernel for separable density maps, enabling post-processing
techniques for cell location in addition to cell counts. By leveraging unlabeled
data, our self-supervised pipeline with a novel focal consistency loss allows a
drastic reduction of labeled data and achieves state-of-the-art or very competitive
performance on both 2D and 3D benchmarks, even compared to methods using
full annotations. Finally, we add dot annotation specific features to an existing
labeling tool to facilitate the annotation process. We notice that, in some works
for image classification [T6JT5], the advantage brought by self-supervised learning
against fully supervised learning diminishes as the number of labeled data grows.
In the future, we plan to investigate this matter for cell counting.
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